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In the majority of papers on the optimum regime of motion for limited power
it is assumed that the vehicle consists of three parts: payload, the weight
of the power source, and the weight of the working substance 17. A more
detailed analysls requires the inclusion of additional wei_ hc¢ components in
the weight formula.

The qualitative features of optimum guidance are investigated here, taking
into account: (1) the weight of the motor, and (2) the weight of the reactive
mass of the power source.

We introduce the following notation: g4, V, P and ¥ are the mass flow,
exhaust velocity, thrust and power of the exhaust jet, respectively; G,, 6,
and G, are the welght of the propellant, the weight of the power source,and
the payload, respectively; GP and Géare the welghts of the motor and re-
active mass of the power source, respectively; 4 1s the total weight,

a = Pg/b 15 the acceleration due to the thrust, r and v are the radius
vector and veloclty vector of the moving point, 1 1is a unit veétor in the
direction of the thrust, R(r, #) 1s the acceleration of gravity, and ¢ is
the time — the argument of the problem. We have the following relatlons
between the weight components ¢, and ¢, and the parameters of the exhaust

Jet: P _ _ aG?

max’ Cp=—80=— 5N 2gN ©.9)

Gy =aN

The motlon of the point cbeys the followlng system of equations and bounda-
ry conditions:
r=v, v=@g/Gi+R=4ai+R (0.2)
r (0) = r{®, v (0) = v(®, r (7)) = r'd, v(T) = v

where 7 1is the time of motion and the superscripts O and 1 refer to the
beginning and the end of the motion.

The optimum control functions of the problem are selected on the follow-
ing basis: It is required to provide the maximum payload 5, for fixed
initial weight g© and prescribed initial (r'® v(®) and final (¢W, y()) pointe
in phase space. The time of motion T 1is also gilven.
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l. We formulate the variational problem for an ideal propulsion system,
taking into account the weight of the motor

6=6,+ G, + Gy + Gp (1.9

The weight of the motor Gp is a function of the maximum power Vmax and
the maximum thrust ppzx delivered by the motor, as well as a number of para-
meters by ,...., b

Gp = f Wiaxs Praxs by - - by) (t.2)

The parameters b,,..., b, for an ideal propulsion system do not enter
into the dynamical equations (0.2}, and they appear in the weight formula
(1.1) only through_the term (1.2), hence they may be chosen from the con-
dition of minimum'GP before the whole variational problem has been solved.
The resulting expressions take the form

by = @; Wiaxs Prmax)hr « + + 5 = @5 WVinays Pryay) (1.3)
Substitution of {1.3) into (1.2) yields the functional dependence

Gp=F N (1.4)

max’ Pmax)

The parameters WNpax and Ppax 8are to be found from the solution of the
whole varlational problem. We will describe the subsequent procedure for
the cace where {1.4) is the linear function

Gp = &'Npay + TPrax (.5

The order of magnitude of y 1s 10— 106 [2].

In view of the fact that the welghts Gp and GN enter additively into
Formula (1.1} for the total weight, the term a'Npax from (1.5) may be added
to Gun{Gy ¥ &'Npypay = (@ + @) Npa0)e In this manner the component of the
motor weight in (DL’S) proportionai to Vo may be excluded from conslder-
ation. For the welght of the motor we wiﬁ{l use Formula

Gp = TPy (1.6)

We refer the thrust p to the maximum thrust Pmax = gp /T, the power ¥
to the maximum power Ngax = G,/a and all of the welghts'G,, G,,Gy and’ G
to the initial weight @0} retaining the old notation for the new dimenslon-
less quantities. As in [3] we introduce the weight

Gy =G, + G, (G5 = G,) .n

Then the system of equations for the rate of efflux and for the dynamics
is written 2ps
ag Gp°P g PGp

GZ:‘—W—EE—N—’ r=v, v.=TWi+R (1.8)
The initial condition for the welght Gy takes the form
Gz(ﬁ) =4 — GP(G) — GN(O) (1.9)

In accordance with the variational problem formulated above, it is neces-
sary to find the optimum control functions j, N, P, GN, and Gp, glving the
maximum relative payload G, = qu , for which the motlon obeys the differ-
ential equations (1.8) and " he boundary conditions (1.1) and (1.9).

By definition the control functions ¥{z) and p(¢) are bounded above and
below
12N 020, 1>2P( >0

The control functions GN (f) and Gp (f) differ from the others in that
their initial values GN(O) and GP(O) are related by condition (1.9). In
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order to apply the extremum method of variational analysis, we supplement
the system (1.8) by the relations

Gy =—4qn Gp=~—gp (gn 0, gp () = 0) (1.10)

After such a substitution the functions GN and Gp are the phase co-
ordinates, while (N and gp are the new controls (this method was previ-
ously used in [5]). If thé weights Gy and Gp remain invariant along the
trajectory under the conditions of the problem, then. gy =0 and ¢p = 0.

In order to solve the variational problem according to the method of L.S.
Pontriagin, we form the Hamiltonlan functlion . and wrife down the equa-
tions for the momenta

ag Gp'P? . PG, .
H= = a3 Gy — Pin = Petp BV B (5 g g o RJAD
PG
- & TP . F) '
Py= T (Gs+GN+ Gp)a(l'llu), prz__..é;‘_(p'J R)
. ap Gp°P* g PG% . ‘
PN=—Pe3 GaN Ty (Gg + Gy F G " Pohs Po=—P; (1.12)

. agGeP' g PG+ Gy
Pp“Pz‘,gTs GNN + T (Gz+ GN+ Gp)g(l‘pv)

The boundary conditions for the momenta are
0) .. - —
PN( ) o pp(o) — Pz:w): },N(l) — pPu) =0, P 2(1) = — 4 (1.13)

From the condition of minimum # with respect to the control 4 it fol-
lows that

i=—p,/py (1.14)

The function 1/]V enters into ¥ 1lilnearly, hence the control & takes
on the values O and 1 depending on the sign of the momentum Dz(t,)

We can show that Py () <0 over the entire interval [0,7]. If pgp(f) >0
on some portion of the interval, then for this portion the coptimum values of
P(¢) and ¥(¢) will be the limiting values p = 1 and & = 0 (see (1.11)).
This corresponds to infinite flow through the propulsion syscem with zero
exhaust velocity, Such an operating condition is clearly not optilmum, hence
the assumption py () > 0 is untrue and consequently pyp ()< 0 for 0 I T.

In view of the constant sign of the function pz(t), the control function
¥{t) is constant
N{H=1 (1.15)

The control function p{¢) changes within the limits of the closed Inter-
val { > P (1) > 0 as follows:

Within the interval

P() =Py, (Popt N S ) (1.16)
P & GplGp+ Gy + Gp)
At the upper limit
P =1 For Popy>1 (1.17)
At the lower 1imic
P=0 for A>0 (Az~pz%%%—?—pu—$-m_?;?@) (1.18)
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With the help of Expression (1.16) for P
A into

opt "2 iansform the combination

2

A= g‘g—GP iPn ( . 2P0pt>
=P GLN \T 1Y P
The ratio Popt/P 21, hence A < O on the whols interval, and the lower

limit (1.18) 1is not attained by the optimum control function P (f) — the

propulsion system 1is cut-in for the whole trajectory.

If 1imits of the type ¢p X Qp and ¢y X Qy are not imposed on the con-
trols ¢§p and 4y ,then the momerita PP and PN are nonpositive everywhere
on [(?.TJ. We willl carry out the proof for Pp- We assume the contrary, let
pp(t') >0 at a gertain instant ¢ = t’. Then the control g¢p takes on the
optimum value ¢p =00 (see (1.11)), which corresponds to the jnstantaneous
Jettisoning of final part of the welght Gp.  The derivative Pp remains
finite for gp == 00, hence the momentum pp(t) does not change sign in a
finite interval of time in the neighborhood of the instant ¢ = t', Con-
sequently, at a finite interval of time ¢p (t) =00, This corresponds to an
infinitely large Jjettisoning weight of Gp, which 1s impossible because of
the finiteness of the component GP. Hence the initlal assumption is untrue

and
pp(0S0, Py T>t>0 (1.19)

In the case, when conditions of the type mentioned are imposed on the
control functions 9pe and 9n and, in particular, it 1s assumed that .
gy = gp =0, (T > 1> 0), then the conclusions regarding the signs of Py (8
and "' Pp (1) are invalid.

The analysis of the optimum controls ¢N and 9¢p_which in accordance
with the proposed method replace the old controls GN and GP gives two
following types of regimes: regimes of limiting contfols gy = O and ¢p = 0
for Py << 0 and pp < 0 which correspond to Gy = oonsy ana Gp == const and
regimes of the singular controls pn () =0 ana pp{) =0 tor py () =0
and Pp {t} = 0 which correspond to & minimum of function F with respect to

GN and GP' It should be noted that the presence of the two types of re-
gimes mentloned is a general property of problems with boundary conditions
of the type (1.9) imposed on the control functions.

The expressions for PN and Pp with the aid of {1.16) may be trans-
formed 1into

PN=Po o ey (G + Gyt Gp) \ Py~ G s+ Gy +Gg
.8 P ( P, GstGy )
PP=Poy Gt Gy +Gp \™ P ™ Gx +Gy+Gp

(1.20)

The regime of the singular control for ¢y and ¢p 1s reallzed respect-
ively for
P 26y P Gp+ Gy
Popt G+ Gy+Gp’ Pyt Gp+ Gyt Gp

{1.21)

If P = Popt , then the second condition (1.21) obviously cannot be real-
ized, and pp < 0. Consequently, the control P has its limiting value
P =1 on the portions of the trajectory on which GP decreases.

In order to satisfy the boundary condition pP“) == 4in the case where
there is no upper limit on ¢p (¢) , it is necessary that the trajectory be
completed by a portion with p A1 ., Actually, the momentum pp (t) is non-
positive at every instant of time {(1.19), hence in order to atvain the upper
limit pp = 0§ the derivative P p must be nonnegative to the left of the
point pp =0, which according to {1.20) can happen only for p =1 .

To conclude this Section, we cite the integral [4] of the systems (1.8)
and {1.12), which exists for P = Py Gy = const and Gp = const

(Gg + Gy -+ Gp)* py = const
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2. We consider the variational problem for an ideal propulsion system,
taking into account the welght of the reactive mass of the power source

G:Gn+Gm+GN+Ga'
The welght of the reactive mass Ge 1s expressed in terms of the energy
Z dellvered as the mass as

G.=Eg/en  (n=510-9s (2.1)

where @ 1s the veloclty of light and n 1s the coefficient of transfor-
mation of mass into energy.

The power and the available energy at the instant ¢ are related by
E=—N 2.2

We introduce the weight sum G, = G, + G, + G,.

As in Sectlon 1, we refer the power to the maxin} power Nmax""‘ GN/'Q and
the weights G,, G, and Gy to the initial weight G% ~retaining the old
notation for the new dimenslonless quantitles.:. The differentlial equations
for consumptlion of weight Gs and for the dynamics, as well a5 the initial
condition for the weight G8 , become

[ (Gs“;' GN)z 2

g

G's;*mNGN——QE——"m*a, r=v (2.3)
v =ai+$ R; G0 4 GO =1

The variational problem consists of determining the optimum controls N,
Ny 4 and o which yield & maximum of the functional Ga(l’z Gn.

Constructing the Hamiltonian function and writing the equations for the
momenta, we have

4 o (Gs+ GN)‘2 s
H=—p, [WNGN + 37 NGy a2]+ PV $ p,o(ei 4 R) 2.9
. a G+ Gy ] 2 .
Py :Ps?_ma" pr:-‘—a?(pv'R)’ Py = Py 2.5
ps () =—1

The control 1(t) yielding the minimum 7 1is given by Formula (1.12}.
The method developed in Sectlon 1 should be applied in order to determlne
the optimum control .Gy {f). Here we assume that Gy = const

We write out the part of the function §# containing o(¢) and ¥(z)

2 o (G, + G
H* =~ps[c2_r.ENGN+'2Tg'_TV“G”§_““2]”p”“ (2.6)

The momentum p, 1s negative everywhere in the interval 0 ¢ K T. Actu-
ally, the function p, (¢) 1s determined by the boundary conaition and the
homogeneous differential equation {2.5) with bounded coefficlents, hence the
function pg (¢) does not change sign and remalins negative everywhere.

The minimum of the functlon #F* with respect to al¢) and ¥(¢) is attained
under conditlons

Py g GN
a———ps % @, F GP’ 1\:’--1 for A, <O
a=20, N=20 for A, >0 2.7)

Ae—p Bog e OGN
e~ TP g On Y 3 2 (G, B Gy
Thus the consideration of the weight of the reactlive mass for the power

source leads to the possible inclusion of passive intervals as parts of the
optimum trajectory. This occurs when the acceleration, calculated from
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(2.7), satisfies the inequality

V2/q Gy —
a <:g-—1§;_-72:;772;’ oo V>c¢ ern

the latter 1s expressed in the terms of the exhaust velocity.
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