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In the majority of papers on the optimum regime of motion for limited power 
it is assumed that the vehicle consists of three parts: payload, the weight 
of the power source, and the weight of the working substance [I!. A more 
detailed analysis requires the inclusion of additional wei&i components in 
the weight formula. 

The qualitative features of optimum guidance are investigated here,taking 
into account: (1) the weight of the motor, and (2) the weight of the reactive 
mass of the power source. 

We introduce the following notation: g, V, p and N are the mass flow, 
exhaust velocity, thrust and power of the exhaust jet, respectively; G,, G, 
and G, are'the weight of the propellant, the weight of the power source,and 
the payload, respectively; G, and G;are the weights of the motor and re- 
active mass of the power source, respectively; 9 
a = Pg/C 

is the total weight, 
is the acceleration due to the thrust, r and v are the radius 

vector and velocity vector of the moving point, I is a unit 'veitor in the 
direction of the thrust, R(r, t) is the acceleration of gravity, and t is 
the time - the argument of the problem. We have the following 
between the weight components 6, and ~2, and the parameters of 
Jet: 

G~==UN,,,, 

relations 
the exhaust 

(0.1) 

The motion of the point obeys the following system of equations and bounda- 
ry conditions: 

F' = v, v' = (Pg / C) i + R = ai + R (0.2) 

r (0) = r(O), v (0) = v(O), F (T) = r(l), v (T) = v(l) 

where 2 is the time of motion and the superscripts 0 and 1 refer to the 
beginning and the end of the motion. 

The optimum control functions of the problem are selected on the follow- 
ing basis: It is required to provide the maximum payload c?" for fixed 
initial weight G(O) and prescribed initial (r(O), y(a)) and final (p(l).&)) point- 
in phase space. The time of motion T is also given. 
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1. We formulate the variational problem for an ideal propulsion system, 
taking into account the weight of the motor 

The weight of the motor G, is a function of the maximum power jImax and 
the maximum thrust pmax delivered by the motor, as well as a number of para- 
meters bl , . . . . , b, 

The parameters b,,..., b. for an ideal propulsion system do not enter 
into the dynamical equations (0.2), and they appear in the weight formula 

i:;:~!n of m1nimum.G 
only through.the term (1.2), hence they may be chosen from the con- 

before the whole variational 
The resulting expresions take the form 

problem has been solved, 

b, = 4Dx tffm*x, Pm& * * *t 5, = 9s (Nmf+p P,,,) U-3) 

Substitution of (1.3) into (1.2) yields the functional dependence 

G, = J' (Nmax, J',,,) (1.4) 

The parameters Nmax and Pmax are to be found from the solution of the 
whole variatlonal problem. We will describe the subsequent procedure for 
the case where (1.4) is the linear function 

The order of magnitude of y is l@- 106 r21. 
In view of the fact that the weights G, and G, enter additively into 

Formula (1.1) for the total wei ht 
to G, (G, f a’N 

-r: fa ~ a,) 1\~ ,,,t;; ;;;m a’Nmax from (1.5) may be added 

ET?) proportiona??o 
s manner the component of the 

motor weight in may be excluded from consider- 
ation. yrn%?I use Formula For the weight of the motor we w 

GP = ~~In,x (1.6) 

We refer the thrust p to the maximum thrust p,ax = Gp [r, the power N 
to the maximum power Nm x = ~,,/a and all of the weightsG,, G,,G~'and' G, 
to the initial weight GO) ? retaining the old notation for the new dimenslon- 
less quantities. As in [33 we introduce the weight 

G, = G, + G, (G,(I) = G,, (1.7) 

Then the system of equations for the rate of efflux and for the dynamics 
is written 

ag GpmPa 
G’,= - -- r’ = v, 

g PG, . 
2~s G,N ’ “=r G,+ G,+ G, i-t+R (*.a 

The initial condition for the weight Cc takes the form 

GE(o) = 1 - $,(O) _ GNfo) V.9) 

In accordance with the variational problem formulated above. it is neces- 
sary to find the optimum control f nctions 
maximum relative payload G = G, tB 

i,N, P, GN, and Gp, giving the 
for which the motion obeys the differ- 

ential equations (1.8) and?he bounhary conditions (1.1) and (1.9). 

By definition the control functions y(t) and p(t) are bounded above and 
below 

i>,N(@>O, 1 >, P (t) >, 0 

The control functions GN(~) and Gp(t) differ from the others in that 
their initial values GN(0) and Gp(0) are related by condition (1.9). In 
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order to apply the extremum method of variational analysis, we supplement 
the system (1.8) by the relations 

G'N=-&,,, G',=- [Ip ('?N (@t qp @) >, O) (1.10) 

After such a substitution the functions c, and GP are the phase co- 
ordinates, while QN and qp are the new controls 
ously used in [ 53). If the weights 

(this method was previ- 
GN anit Gp remain invariant along the 

trajectory under the conditions of the problem, then.pN =0 and qp = 0. 

In order to solve the variational problem according to the method of L.S. 
Pontriagin, we form the Hamiltonlan function .H and write down the equa- 
tions for the momenta 

HZ-- 
ag GP 

pI:F G,N - - PNqN - PPqP + Pr i $ R (1.11) 

PGP 
P-I: = $- (G, + G, + G,)” ti ’ p,)* p’, -_ - & (P, * RI 

p’N = _ 
ag GPapa PGE 

- - 
pC2yl G$N + + (cr, f &, + C,)% ci ’ p&, P’V- -is (1.12) 

ag GE-P’ 
-- P'P =h27’ G,N + 

g P(Gc+GN) 
r (G,+ G,+ Gp)l(i*p~) 

The boundary conditions for the momenta are 

pN(a) = p,(o) =pc(o), pN(1) = pp(l) = 0, pc(l) X - 1. (1.13) 

From the condition of minimum ,q with respect ‘to the control i it fol- 
lows that 

i = - pu I pv (1.14) 

The function l/N enters into H linearly, hence the control Iu' takes 
on the values 0 and 1 depending on the sign of the momentum PC(t). 

We can show that P=(t) <O’ over the entire interval [O,rJ. If Pc(@>O’ 
on some portion of the interval, then for this portion the optimum values of 
P(t) and y(t) will be the limiting values p = 1 and N = 0 (see (1.11)). 
This corresponds to infinite flow through the propulsion system with zero 
exhaust velocity, Such an operating condition is clearly not optimum, hence 
the assumption pI: ft) >O Is untrue and consequently pr:(l)< 0 for 0 Qt < T. 

In view of the constant sign of the function p,(t), the control function 
y(t) Is constant 

N (t) = 1 (1.15) 

The control function p(t) changes within the limits of the closed Intel'- 
val 1 >p(t)),Q as follows: 

Within the Interval 

p 0) = Popt P 
PD 7 GNN 

opt = - pc a G, (Gr, + G, + GP) 
(1.16) 

At the upper limit 

P (t) = 1 for P opt> 1 

At the lower limzit 

P=O for A)0 
i 

ag GpaPr g PC, 
d=-pp,2ya G,N ---purG,+ G,+ cp ) 

(1.17) 

(1.18) 
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With the help of Expression (1.16) fw popt w.3 i;~sinsform the combination 
a into 

ag GVB 

The ratio p,ptlP > 1, hence L, < 0 on the whoi,? interval, and the lower 
limit (1.18) Is not attained by the optimllm control function P(t) - the 
propulsion system is cut-in for the whole trajectory, 

If limits of the type qp< QP and qN<QN are not imposed on the con- 
trols 9p and (7N ,then the momenta PP and PN are nonpositive everywhere 

We will carry out the proof for pp. We assume the contrary, let 
at a pertain instant t = t’. Then the control Qp takes on the 

optimum value pp E-00 (see (l.ll)), which corresponds to the $nstantaneous 
jettisoning of final part of the weight Gp. 
finite for pp’ = 

The derivative pp remains 
OC,,hence the momentum p*(t) does not change sign in a 

finite interval of time in the neighborhood of the instant e = t'. Con- 
sequently, at a finite Interval of time qp(t) =m. This corresponds to an 
infinitely large jettisoning weight of Gp, which is impossible because of 
the finiteness of the component G,. Hence the initial assumption is untrue 
and 

Pp (0 GO, PN tt) < o v- > t ,, 0) (1.19) 

In tht case, when conditions of the type mentioned are imposed on the 
contl,ol functions q,* and QN and, in particular, it is assumed that 
qN = pp = 0, (?‘>, IhO), then the conclusions regarding the signs of PN (6 

and'pr (8) are invalid. 
The analysis of the optimum controls Prj and Qp which in accordance 

with the proposed method replace the old controls c, and GJJ gives two 
following types of regimes: regimes of limiting contEols qN =Oand qp=' 
for 'pN <O and pp<O' which correspond to GN=_oonst ana Gp = con& and 
regimes of the singular controls pN(t)= 0 and P p(t) =O t’0P p~(k)=O 
and pp(t) = 0 which correspond to a minimum of function H with respect to 
C, and G,. It should be noted that the presence of the two types of re- 

gimes mentioned is a general property of problems with boundary conditions 
of the type (1.9) imposed on the control functions. 

The expressions for *PN and Pp with the aid of (1.16) may be trans- 
formed into 

P 2GN 

P,pt- G,+GN+Gp 
(1.20) 

The regime of the singular control for qN and 4P is realized respect- 
ively for 

P 2GN P G,+GN 
-Z 
P opt G,-I-GN-I-GJ. ’ P~~=Gz+GN-!-G~ 

(1.21) 

If P = Popt , then the second condition (1.21) obviously cannot be real- 
ized, and pp <O. Consequently, the control F has its limiting value 
p = 1 on the portions of the trajectory on which G, decreases. 

In order to satisfy the boundary condition pr(') I-- 0 in the case where 
there is no upper limit on qp((t), it is necessary that the trajectory be 
completed by a portion with p $1 . Actually, the momentum pp(t) is non- 
positive at every instant of time (1.19), hence in order to attain the upper 
limit pr -= 1) the derivative pp must be nonnegative to the left of the 
point pp = 0 , which according to (1.20) can happen only for P = 1 . 

To conclude this Section, we cite the integral [4] of the systems (1.8) 
and (1.12), which exists for p =POpt, G,v = const and G, = COnSt 

(GE + GN + Gp)’ PC = COW, 
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2. We consider the variational problem for an Ideal propulsion system, 
taking into account the weight of the reactive mass of the power 
G=G,+G,+GC,+G,. 

source 

The weight of the reactive mass G, 
E delivered as the mass as 

is expressed in terms of the energy 

G, = Eg / c2q (q z 5 4o-‘)y] (2.i) 

where o is the velocity of light and n Is the coefficient of transfor- 
matlon of mass into energy. 

The power and the available energy at the instant t are related by 

E'z-& (2.2) 

We introduce the weight sum G,= G,$ G,+ G,. 

As in Section 1, we refer the power to the maxi 
the weights G,, G, and GN to the initial weight ?Y 

power N,ax= GNIa and 
G retaining the old 

notation for the new dlmenslonless quantities., The differential equations 
for consumption of weight G,, and for the dynamics, as well as the initial 
condition for the weight G, , become 

G', =, - &uNGN-G NG 
u 0% + %tt” u2 

N ’ 
r” = v 0.3) 

v’ = ai + R; G,(o) ..+ GNf@) -_ 1 

The varlatlonal problem consists of determining the optimum controls N, 
+,I and a which yield a maximum of the functional Ggfl)= G,,. 

Constructing the Hamiltonlan function and writing the equations for the 
momenta, we have 

Hz- 
01 CC,-+ GN)' 

hNGN+ 2g NG, 6 1 + pr.v $ pu.(d ?+ W (2.4) 

a G,+GN 
Ps’ = PS g NG, u2, psr z - $- (P, - Rf , ~0' = - P,. (2.5) 

Ps m = - i 
The control i(t) yielding the minimum H is given by Formula (1.12). 

The method developed in Section 1 should be applied in order to determine 
the optimum control .,GN(t). Here we assume that GN= Con& . 

We write out the part of the function ,Y containing a(t) and N(t) 

(2.6) 

The momentum p8 is negative everywhere In the interval O<t<T. Actu- 
ally, the function p,(t} 1s determined by the boundary conaltion and the 
homogeneous differential equatlon (2.5) with bounded coefficients, hence the 
function p,(t) does not change sign and rsemains negative everwhere. 

The minimum of the function ,J$* with respect to e(t) and N(t) is attained 
under conditions 

Pug GN 
a=--- 

ps a (G, + GN12’ ! = ’ for A, <0 

a = 0, N 0 =Z for A,>0 (2.7) 

Thus the consideration of the weight of the reactive mass for the power 
source leads to the possible inclusion of passive intervals as parts of the 
optimum trajectory. This occurs when the acceleraticn, calculated frcn, 
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(2.71, satisfies the inequality 

v2/? GN 
aCgF------ G,+ G,’ or v > c jf2g 

the latter is expressed in the terms of the exhaust velocity. 
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